Tables 5: Tests in banknotes' high places


Index

Table 5-1: D30F based on lognormal distribution
Table 5-2: Test A3 of 1,4C
Table 5-3: Test A3 results
Table 5-4: Test B3 of 1,9C
Table 5-5: Test B3 results
Table 5-6: D30F Distribution of 100,000 random numbers
Table 5-7: Test C3.4 of 1,2C
Table 5-8: Test C3.2 results
Table 5-9: Test C3.4 results
Table 5-10: Test C3.6 results
Table 5-11: Test C3 results
Table 5-12: Test D3 of 1,5C
Table 5-13: Test D3 results
Table 5-14: NBC[1]s of test D3
Table 5-15: Test E3 of 1,7C
Table 5-16: Test E3 results
Table 5-17: NBC[1]s of test E3
Table 5-18: Performances of 8 C2Ds in BHP
Table 5-19: Expected ratio of BLP to BHP
Table 5-20: Performances of 8 C2Ds in BP

Table 5-1

D30F (Decreasing 30 Frequencies) based on lognormal distribution

Num.CalculationRation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
f(0.8)=0.4864
f(1.6)=0.2233
f(2.4)=0.1133
f(3.2)=0.0634
f(4.0)=0.0382
f(4.8)=0.0243
f(5.6)=0.0162
f(6.4)=0.0111
f(7.2)=0.0079
f(8.0)=0.0057
f(8.8)=0.0043
f(9.6)=0.0032
f(10.4)=0.0025
f(11.2)=0.0019
f(12.0)=0.0015
f(12.8)=0.0012
f(13.6)=0.0010
f(14.4)=0.0008
f(15.2)=0.0006
f(16.0)=0.0005
f(16.8)=0.0004
f(17.6)=0.0004
f(18.4)=0.0003
f(19.2)=0.0003
f(20.0)=0.0002
f(20.8)=0.0002
f(21.6)=0.0002
f(22.4)=0.0001
f(23.2)=0.0001
f(24.0)=0.0001
0.4818
0.2212
0.1122
0.0628
0.0378
0.0241
0.0160
0.0110
0.0078
0.0057
0.0042
0.0032
0.0024
0.0019
0.0015
0.0012
0.0010
0.0008
0.0006
0.0005
0.0004
0.0004
0.0003
0.0003
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
Total1.00961.0000

¤ f(x)=1/x/√(2πe(log(x))2). μ=0. σ=1.
¤ Ration of number 1 is 0.4846/1.0096=0.4818.
¤ f(x) of 24<x is enough small to be disregarded.
¤ This D30F is used on tests in BHP (Banknotes' High Places) where D[N] (Denomination of HN=N) is restocked with.

Table 5-2

Test A3 of 1,4C: The total QB (Quantity of Banknotes) based on minimum NBCs (the Number of Banknotes a payer Carries) to make Y1 to Y30 without change, using 1-yen banknotes and 4-yen banknotes

To
make
NBCD30FQB
[4][1]
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
...
Y29
Y30
0
0
0
1
1
1
1
2
2
2
2
3
...
7
7
1
2
3
0
1
2
3
0
1
2
3
0
...
1
2
0.4818
0.2212
0.1122
0.0628
0.0378
0.0241
0.0160
0.0110
0.0078
0.0057
0.0042
0.0032
...
0.0001
0.0001
0.4818
0.4424
0.3366
0.0666
0.0779
0.0737
0.0650
0.0233
0.0243
0.0235
0.0215
0.0102
...
0.0008
0.0009
Total1.00001.7156

¤ 10-yen banknotes do not exist.
¤ QB is the sum of NBC[1] (NBC of 1-yen banknotes) and 1.06 times NBC[4], each of which is multiplied by D30F. e.g. QB to make Y6 is (2+1.06)*0.0241=0.0737.
¤ Total NBC[1] with D30F is 1*0.4818+2*0.2212+...+2*0.0001=1.4453. And total NBC[4] with D30F is 0*0.4818+...+7*0.0001=0.2550.

Table 5-3

Test A3 results: Total QBs and their Ex‰s, of 8 C2Ds

C2DTotal NBCTotal
QB
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
0.8994
0.4459
0.2550
0.1590
0.1051
0.0725
0.0517
0.0378
0.6665
1.1276
1.4453
1.6703
1.8347
1.9578
2.0517
2.1251
1.6199
1.6003
1.7156
1.8388
1.9461
2.0347
2.1065
2.1652
12
0
72
149
216
271
316
353

¤ QB is the sum of NBC[1] and 1.06 times NBC[N].

Table 5-4

Test B3 of 1,9C: The total of minimum LCs to make Y1 to Y30 without change, using 1-yen banknotes and 9-yen banknotes

To
make
NBMD30FLC
[9][1]
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
...
Y29
Y30
0
0
0
0
0
0
0
0
1
1
1
1
...
3
3
1
2
3
4
5
6
7
8
0
1
2
3
...
2
3
0.4818
0.2212
0.1122
0.0628
0.0378
0.0241
0.0160
0.0110
0.0078
0.0057
0.0042
0.0032
...
0.0001
0.0001
0.4818
0.4424
0.3366
0.2512
0.1890
0.1446
0.1120
0.0880
0.0117
0.0143
0.0147
0.0144
...
0.0007
0.0008
Total1.00002.1818

¤ 10-yen banknotes do not exist.
¤ LC is the sum of NBM[1] (the Number of 1-yen Banknotes Moved in cash transactions) and 1.5 times NBM[9], each of which is multiplied by D30F. e.g. LC to make Y11 is (2+1.5)*0.0042=0.0147.
¤ Total NBM[1] with D30F is 1*0.4818+2*0.2212+...+3*0.0001=2.1251. And total NBM[9] with D30F is 0*0.4818+...+3*0.0001=0.0378.

Table 5-5

Test B3 results: Total LCs and their Ex‰s, of 8 C2Ds

C2DTotal NBMTotal
LC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
0.8994
0.4459
0.2550
0.1590
0.1051
0.0725
0.0517
0.0378
0.6665
1.1276
1.4453
1.6703
1.8347
1.9578
2.0517
2.1251
2.0156
1.7965
1.8278
1.9088
1.9924
2.0666
2.1293
2.1818
122
0
17
63
109
150
185
215

¤ LC is the sum of NBM[1] and 1.5 times NBM[N].
¤ NBM[N]s and NBM[1]s are respectively the same as NBC[N]s and NBC[1]s of test A3 (table 5-3).

Table 5-6

D30F Distribution of 100,000 random numbers

Num.ExpectationDistribution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
48,180
22,120
11,220
6,280
3,780
2,410
1,600
1,100
780
570
420
320
240
190
150
120
100
80
60
50
40
40
30
30
20
20
20
10
10
10
48,066
22,072
11,283
6,333
3,796
2,363
1,689
1,094
776
588
426
285
244
186
147
102
106
69
66
53
45
48
35
36
17
17
23
11
16
8
Total100,000100,000

¤ The average of the distributed numbers is 2.472.

Table 5-7

Test C3.4 of 1,2C: How the simulation of test C3.4 proceed in the case of 1,2C

NBCNBRTo
make
How
[2][1]
...............
01-Y11
003Y22
20-Y12-1
116Y102+2+2+2+2
21.........

¤ 10-yen banknotes do not exist.
¤ P (a Payer in cash transactions) tries every time to best reduce NBC.
¤ NBR (the Number of Banknotes Restocked with) is the least 2-yen banknotes to reach, the amount of shortage in the next transaction plus Y4. e.g. To make Y2 with no 2-yen and no 1-yen in the table, P restocks with three 2-yen banknotes. This NBR is (2-0+4)/2=3. And, to make Y10 with a 2-yen and a 1-yen, NBR is 6 that is the rounded up number of (10-3+4)/2=5.5.
¤ Other C2Ds also restock with D[N] similarly.
¤ On test C3.2, the plus amount is Y2. And on test C3.6, the margin is Y6.

Table 5-8

Test C3.2 results: Average QBs of 8 C2Ds

C2DAvg.
ABR
Max. NBCAverage NBCAvg.
QB
[N][1][N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
Y4.143
Y5.222
Y5.801
Y6.483
Y7.214
Y8.018
Y8.834
Y9.739
16
11
8
7
6
5
4
4
1
2
3
4
5
6
7
8
1.827
1.091
0.749
0.566
0.454
0.379
0.325
0.285
0.500
0.996
1.505
1.997
2.501
3.001
3.509
3.988
2.437
2.153
2.299
2.597
2.982
3.403
3.853
4.290

¤ QB is the sum of NBC[1] and 1.06 times NBC[N].
¤ An average ABR (the Amount of Banknotes Restocked with) is inverse proportion to the frequency of restocking.

Table 5-9

Test C3.4 results: Average QBs of 8 C2Ds

C2DAvg.
ABR
Max. NBCAverage NBCAvg.
QB
[N][1][N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
Y5.877
Y6.458
Y7.771
Y8.211
Y8.493
Y8.973
Y9.529
Y10.276
17
12
9
7
6
5
5
4
1
2
3
4
5
6
7
8
2.384
1.473
1.155
0.799
0.587
0.458
0.375
0.317
0.500
0.996
1.505
1.997
2.501
3.001
3.509
3.988
3.027
2.558
2.729
2.844
3.124
3.487
3.906
4.324

¤ QB is the sum of NBC[1] and 1.06 times NBC[N].
¤ Maximum NBC[1]s and average NBC[1]s are the same as test C3.2 (table 5-8).

Table 5-10

Test C3.6 results: Average QBs of 8 C2Ds

C2DAvg.
ABR
Max. NBCAverage NBCAvg.
QB
[N][1][N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
Y7.721
Y8.680
Y8.807
Y10.071
Y11.728
Y11.347
Y11.150
Y11.441
18
12
9
8
6
6
5
4
1
2
3
4
5
6
7
8
2.924
1.915
1.290
1.051
0.931
0.673
0.504
0.399
0.500
0.996
1.505
1.997
2.501
3.001
3.509
3.988
3.600
3.026
2.872
3.111
3.488
3.715
4.044
4.411

¤ QB is the sum of NBC[1] and 1.06 times NBC[N].
¤ Maximum NBC[1]s and average NBC[1]s are the same as test C3.2 (table 5-8).

Table 5-11

Test C3 results: Average QBs and their Ex‰s, of 8 C2Ds

C2DQBAvg.
QB
Ex‰
Test
C3.2
Test
C3.4
Test
C3.6
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
2.437
2.153
2.299
2.597
2.982
3.403
3.853
4.290
3.027
2.558
2.729
2.844
3.124
3.487
3.906
4.324
3.600
3.026
2.872
3.111
3.488
3.715
4.044
4.411
3.021
2.579
2.633
2.851
3.198
3.535
3.934
4.342
171
0
21
105
240
371
526
684

¤ QBs come from tables 5-8, 5-9, and 5-10.
¤ Average QB of 1,2C is (2.437+3.027+3.600)/3=3.021.

Table 5-12

Test D3 of 1,5C: How the simulation of test D3 proceed in the case of 1,5C

NBC
[1]
To
make
HowLC
............
2Y75+1+1
(5+5-1-1-1)
3.5
6
0Y15-1-1-1-15.5
4Y155+5+54.5
4Y45-1
(1+1+1+1)
2.5
4
5.........

¤ 10-yen banknotes do not exist.
¤ P carries enough 5-yen banknotes to pay the amounts.
¤ P chooses every time the smallest LC according to NBC[1].
¤ LC is the sum of NBM[1] and 1.5 times NBM[5].

Table 5-13

Test D3 results: Average LCs and their Ex‰s, of 8 C2Ds

C2DAverage NBMAvg.
LC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1.236
0.824
0.618
0.494
0.412
0.353
0.309
0.275
0.667
1.134
1.396
1.749
1.934
2.207
2.350
2.570
2.522
2.370
2.324
2.490
2.552
2.737
2.813
2.982
85
20
0
72
98
178
211
283

¤ LC is the sum of NBM[1] and 1.5 times NBM[N].

Table 5-14

NBC[1]s of test D3

C2DNBC[1]
Max.Average
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1
2
7
8
13
12
18
16
0.500
0.996
1.701
2.082
2.800
3.142
3.855
4.184

¤ Some NBC[1]s exceed 10 at times.

Table 5-15

Test E3 of 1,7C: How the simulation of test E3 proceed in the case of 1,7C

NBC
[1]
To
make
HowLCC
[1]
LC
...............
4Y41+1+1+1
(7-1-1-1)
-4
4.5
0Y17-1-1-1-1-1-1-7.5
6Y217+7+704.5
6Y51+1+1+1+1
(7-1-1)
0
2
5
3.5
1............

¤ 10-yen banknotes do not exist.
¤ P chooses every time the smallest LC according to NBC[1]. But if NBC[1] exceeds 5, P chooses the smallest LCC[1] (LC of 1-yen Change) before choosing the smallest LC. LCC[1] equals the number of 1-yen change.

Table 5-16

Test E3 results: Average LCs and their Ex‰s, of 8 C2Ds

C2DAverage NBMAvg.
LC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1.236
0.824
0.618
0.494
0.412
0.353
0.309
0.275
0.667
1.134
1.397
1.749
1.955
2.268
2.487
2.691
2.522
2.370
2.324
2.491
2.573
2.798
2.951
3.103
85
20
0
72
107
204
270
335

¤ Each of average LC is the same as or somewhat larger than LC of test D3 (table 5-13).

Table 5-17

NBC[1]s of test E3

C2DNBC[1]
Max.Average
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1
2
6
6
7
7
8
8
0.500
0.996
1.700
2.081
2.724
3.044
3.551
3.988

¤ All the NBC[1]s are under good control.

Table 5-18

Performances of 8 C2Ds in BHP

C2DEx‰ of testTotal
Ex‰
A3
0.05
B3
0.05
C3
0.45
E3
0.45
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
12
0
72
149
216
271
316
353
122
0
17
63
109
150
185
215
171
0
21
105
240
371
526
684
85
20
0
72
107
204
270
335
122
9
14
90
173
280
383
487

¤ Ex‰ of tests A3, B3, C3, and E3 are mixed in the ratio of 5:5:45:45 to produce the total Ex‰. e.g. Total Ex‰ of 1,2C is 0.05*12+0.05*122+0.45*171+0.45*85=122.

Table 5-19

Expected ratio of BLP to BHP

Banknotes'
Denomination
CurrencyRe-
stock
Expectation
BLPBHP
1, N£N01*1
100
1, N, 10A$, ¥,
C$, MX$
101*40
N01*4
1, N, 10, 10NW, L, €10N1*31*3
101*30
1, N, 10,
10N, 100
Rp, Rs,
CN¥, $, R$
1002*50
10N1*51*5
1, N, 10, 10N,
100, 100N
P100N2*11*1
1002*10
Total2914

¤ Currencies and their banknotes' denominations are cited from measurements of banknotes.
¤ D[N1] and D[N2] of C3D currencies are not distinguished.
¤ The smallest D[1] of banknotes is described as "1" in the table.
¤ The smallest 0.1N denominations of some currencies are disregarded in classification.
¤ Restocked denominations are presumed, regardless of the reality, to be whether the largest or the second largest denomination, with their probabilities equal.
¤ Expectation of BLP (BHP) is the number of BLP (BHP) multiplied by the number of currencies. e.g. If a currency has 5 denominations from 1 to 100 like Rp (Indonesian Rupiah), and the largest 100 is restocked, 1's and 10's places become BLP. The expectation of BLP is 2 (the number of places) by 5 (the number of currencies), which is 10.

Table 5-20

Performances of 8 C2Ds in BP (Banknotes' Places)

C2DEx‰Total
Ex‰
BLP
29
BHP
14
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
184
18
2
118
99
35
147
360
122
9
14
90
173
280
383
487
164
15
6
109
123
114
224
401

¤ Ex‰ of BLP and BHP come from table 4-15 and table 5-18 respectively.
¤ Ex‰ of BLP and BHP are mixed in the ratio of 29:14 to produce the total Ex‰. e.g. Total Ex‰ of 1,2C is (184*29+122*14)/43=164.

1¤4

An Efficient Combination of the Denominations of a Currency
Tables 1: Measurements of coins
Tables 2: Tests in coins' places
Tables 3: Measurements of banknotes
Tables 4: Tests in banknotes' low places
Tables 5: Tests in banknotes' high places
Tables 6: Tests of C3Ds

© 2004 Takashi Shimazaki
Updated: April 2, 2014