Tables 4: Tests in banknotes' low places


Index

Table 4-1: Gradual D9F based on lognormal distribution
Table 4-2: Medium D9F based on lognormal distribution
Table 4-3: Steep D9F based on lognormal distribution
Table 4-4: Average D9F
Table 4-5: Test A2 of 1,3C
Table 4-6: Test A2 results
Table 4-7: Test B2 of 1,6C
Table 4-8: Test B2 results
Table 4-9: D9F Distribution of 100,000 random numbers
Table 4-10: Test C2 results
Table 4-11: Test D2 results
Table 4-12: NBCs of test D2
Table 4-13: Test E2 results
Table 4-14: NBCs of test E2
Table 4-15: Performances of 8 C2Ds in BLP

Table 4-1

Gradual D9F (Decreasing 9 Frequencies) based on lognormal distribution

Num.CalculationTotalRation
1
2
3
4
5
6
7
8
9
10
f(0.1)+f(1.1)+...+f(19.1)
f(0.2)+f(1.2)+...+f(19.2)
f(0.3)+f(1.3)+...+f(19.3)
f(0.4)+f(1.4)+...+f(19.4)
f(0.5)+f(1.5)+...+f(19.5)
f(0.6)+f(1.6)+...+f(19.6)
f(0.7)+f(1.7)+...+f(19.7)
f(0.8)+f(1.8)+...+f(19.8)
f(0.9)+f(1.9)+...+f(19.9)
f(1.0)+f(2.0)+...+f(20.0)
0.952
1.162
1.211
1.178
1.110
1.030
0.948
0.870
0.798
0.731
0.103
0.126
0.131
0.127
0.120
0.111
0.102
0.094
0.086
-
Total9.9901.000

¤ f(x)=1/x/√(2πe(log(x))2). μ=0. σ=1.
¤ Mode=1/e=0.368. Median=1. Average=√e=1.649.
¤ f(20.0)=0.0002, and f(x) (20.0<x) is enough small to be disregarded in calculation.
¤ Ration of number 1 is 0.952/(9.990-0.731)=0.103.

Table 4-2

Medium D9F based on lognormal distribution

Num.CalculationTotalRation
1
2
3
4
5
6
7
8
9
10
f(0.2)+f(2.2)+...+f(18.2)
f(0.4)+f(2.4)+...+f(18.4)
f(0.6)+f(2.6)+...+f(18.6)
f(0.8)+f(2.8)+...+f(18.8)
f(1.0)+f(3.0)+...+f(19.0)
f(1.2)+f(3.2)+...+f(19.2)
f(1.4)+f(3.4)+...+f(19.4)
f(1.6)+f(3.6)+...+f(19.6)
f(1.8)+f(3.8)+...+f(19.8)
f(2.0)+f(4.0)+...+f(20.0)
0.736
0.820
0.728
0.613
0.511
0.426
0.357
0.302
0.257
0.220
0.155
0.173
0.153
0.129
0.107
0.090
0.075
0.064
0.054
-
Total4.9711.000

Table 4-3

Steep D9F based on lognormal distribution

Num.CalculationTotalRation
1
2
3
4
5
6
7
8
9
10
f(0.4)+f(4.4)+...+f(16.4)
f(0.8)+f(4.8)+...+f(16.8)
f(1.2)+f(5.2)+...+f(17.2)
f(1.6)+f(5.6)+...+f(17.6)
f(2.0)+f(6.0)+...+f(18.0)
f(2.4)+f(6.4)+...+f(18.4)
f(2.8)+f(6.8)+...+f(18.8)
f(3.2)+f(7.2)+...+f(19.2)
f(3.6)+f(7.6)+...+f(19.6)
f(4.0)+f(8.0)+...+f(20.0)
0.692
0.517
0.352
0.244
0.174
0.128
0.096
0.074
0.058
0.046
0.296
0.221
0.151
0.104
0.075
0.055
0.041
0.032
0.025
-
Total2.3821.000

Table 4-4

Average D9F

Num.D9FAvg.
D9F
GradualMediumSteep
1
2
3
4
5
6
7
8
9
0.103
0.126
0.131
0.127
0.120
0.111
0.102
0.094
0.086
0.155
0.173
0.153
0.129
0.107
0.090
0.075
0.064
0.054
0.296
0.221
0.151
0.104
0.075
0.055
0.041
0.032
0.025
0.185
0.173
0.145
0.120
0.101
0.085
0.073
0.063
0.055
Total1.0001.0001.0001.000

¤ Average D9F of number 1 is (0.103+0.155+0.296)/3=0.185.
¤ Average D9F is used on tests in BLP (Banknotes' Low Places) where denominations are not restocked with.

Table 4-5

Test A2 of 1,3C: Total QB (Quantity of Banknotes) based on minimum NBCs (the Number of Banknotes a payer Carries) to make Y1 to Y9 without change, using 1-yen banknotes and 3-yen banknotes

To
make
HowNBCD9FQB
[3][1]
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
1
1+1
3
3+1
3+1+1
3+3
3+3+1
3+3+1+1
3+3+3
0
0
1
1
1
2
2
2
3
1
2
0
1
2
0
1
2
0
0.185
0.173
0.145
0.120
0.101
0.085
0.073
0.063
0.055
0.185
0.346
0.154
0.247
0.309
0.180
0.228
0.260
0.175
Total1.0002.083

¤ QB is the sum of NBC[1] (NBC of 1-yen banknotes) and 1.06 times NBC[3], each of which is multiplied by D9F. e.g. QB to make Y5 is (2+1.06)*0.101=0.309.
¤ Total NBC[1] with D9F is 1*0.185+2*0.173+...+0*0.055=1.052. And total NBC[3] with D9F is 0*0.185+...+3*0.055=0.973.

Table 4-6

Test A2 results: Total QBs and their Ex‰s, of 8 C2Ds

C2DTotal NBCTotal
QB
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1.706
0.973
0.615
0.377
0.276
0.191
0.118
0.055
0.559
1.052
1.511
2.086
2.315
2.634
3.027
3.476
2.367
2.083
2.163
2.486
2.608
2.836
3.152
3.534
136
0
38
193
252
361
513
696

¤ QB is the sum of NBC[1] and 1.06 times NBC[N].

Table 4-7

Test B2 of 1,6C: The total of minimum LCs (Load of Count in cash transactions) to make Y1 to Y9 without change, using 1-yen banknotes and 6-yen banknotes

To
make
HowNBMD9FLC
[6][1]
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
1
1+1
1+1+1
1+1+1+1
1+1+1+1+1
6
6+1
6+1+1
6+1+1+1
0
0
0
0
0
1
1
1
1
1
2
3
4
5
0
1
2
3
0.185
0.173
0.145
0.120
0.101
0.085
0.073
0.063
0.055
0.185
0.346
0.435
0.480
0.505
0.128
0.183
0.221
0.248
Total1.0002.729

¤ LC is the sum of NBM[1] (the Number of 1-yen Banknotes Moved in cash transactions) and 1.5 times NBM[6], each of which is multiplied by D9F. e.g. LC to make Y8 is (2+1.5)*0.063=0.221.
¤ Total NBM[1] with D9F is 1*0.185+2*0.173+...+3*0.055=2.315. And total NBM[6] with D9F is 0*0.185+...+1*0.055=0.276.

Table 4-8

Test B2 results: Total LCs and their Ex‰s, of 8 C2Ds

C2DTotal NBMTotal
LC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1.706
0.973
0.615
0.377
0.276
0.191
0.118
0.055
0.559
1.052
1.511
2.086
2.315
2.634
3.027
3.476
3.118
2.512
2.434
2.652
2.729
2.921
3.204
3.559
281
32
0
90
121
200
317
462

¤ LC is the sum of NBM[1] and 1.5 times NBM[N].

Table 4-9

D9F Distribution of 100,000 random numbers

Num.ExpectationDistribution
1
2
3
4
5
6
7
8
9
18,500
17,300
14,500
12,000
10,100
8,500
7,300
6,300
5,500
18,495
17,300
14,362
11,955
10,116
8,559
7,369
6,290
5,554
Total100,000100,000

Table 4-10

Test C2 results: Average QBs and their Ex‰s, of 8 C2Ds

C2DMaximum NBCAverage NBCAvg.
QB
Ex‰
[N][1]Tot.[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
4
3
2
1
1
2
3
4
1
2
3
4
5
3
3
5
5
4
4
5
5
4
4
5
1.995
1.197
0.799
0.498
0.399
0.895
1.192
0.993
0.500
0.901
1.295
1.999
2.098
1.202
0.901
1.496
2.615
2.169
2.142
2.527
2.521
2.150
2.164
2.549
221
13
0
180
177
4
10
190

¤ QB is the sum of NBC[1] and 1.06 times NBC[N].

Table 4-11

Test D2 results: Average LCs and their Ex‰s, of 8 C2Ds

C2DProportionAverage NBMAvg.
LC
Ex‰
P>9C>9[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
0.398
0.398
0.398
0.398
0.497
0.440
0.375
0.260
0
0
0
0
0
0
0.099
0.099
1.296
0.811
0.683
0.445
0.582
0.690
0.741
0.653
0.578
1.050
1.180
1.618
1.232
1.034
1.365
2.147
2.919
2.665
2.603
2.683
2.603
2.509
2.951
3.485
164
62
38
70
38
0
176
389

¤ LC is the sum of NBM[1], 1.5 times NBM[N], and DD (Double Digit value). e.g. LC of 1,9C is 2.147+1.5*0.653+0.260+0.099=3.485.
¤ DD is the sum of P>9 (pay exceeding Y9) and C>9 (change exceeding Y9).

Table 4-12

NBCs of test D2

C2DMaximum NBCAverage NBC
[N][1]Total[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
22
12
8
1
14
105
9,483
92
9
19
18
28
18
26
28
32
23
21
19
29
19
110
9,487
98
3.224
1.305
1.013
0.468
1.725
22.628
4,662.5
15.348
1.044
1.867
2.143
3.226
2.225
2.557
2.399
3.515

¤ NBC[8] of 1,8C proliferates as transactions go on. Other C2Ds let a payer carry dozens of banknotes at times.

Table 4-13

Test E2 results: Average LCs and their Ex‰s, of 8 C2Ds

C2DProportionAverage NBMAvg.
LC
Ex‰
P>9C>9[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
0.398
0.398
0.398
0.398
0.497
0.474
0.406
0.324
0
0
0
0
0
0
0.086
0.100
1.341
0.820
0.691
0.461
0.591
0.689
0.755
0.671
0.580
1.049
1.182
1.659
1.241
1.138
1.581
2.447
2.989
2.676
2.617
2.748
2.625
2.646
3.205
3.877
142
23
0
50
3
11
225
481

¤ Each of average LC is somewhat larger than LC of test D2 (table 4-11).

Table 4-14

NBCs of test E2

C2DMaximum NBCAverage NBC
[N][1]Total[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
7
7
6
1
6
6
7
8
6
7
7
8
8
9
9
9
12
12
11
9
13
13
13
14
2.606
1.295
1.023
0.473
1.662
2.592
2.833
2.108
1.030
1.769
2.012
2.688
2.073
2.175
2.054
2.796

¤ NBCs are under control.

Table 4-15

Performances of 8 C2Ds in BLP

C2DEx‰ of testTotal
Ex‰
A2
0.05
B2
0.05
C2
0.45
E2
0.45
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
136
0
38
193
252
361
513
696
281
32
0
90
121
200
317
462
221
13
0
180
177
4
10
190
142
23
0
50
3
11
225
481
184
18
2
118
99
35
147
360

¤ Ex‰ of tests A2, B2, C2, and E2 are mixed in the ratio of 5:5:45:45 to produce the total Ex‰. e.g. Total Ex‰ of 1,2C is 0.05*136+0.05*281+0.45*221+0.45*142=184.

1¤4

An Efficient Combination of the Denominations of a Currency
Tables 1: Measurements of coins
Tables 2: Tests in coins' places
Tables 3: Measurements of banknotes
Tables 4: Tests in banknotes' low places
Tables 5: Tests in banknotes' high places
Tables 6: Tests of C3Ds

© 2004 Takashi Shimazaki
Updated: April 2, 2014