Tables 2: Tests in coins' places


Index

Table 2-1: Test A of 1,5C
Table 2-2: Test A results
Table 2-3: Test B of 1,2C
Table 2-4: Test B results
Table 2-5: Distribution of 100,000 random numbers among 1 to 9
Table 2-6: Test C of 1,6C
Table 2-7: Test C results
Table 2-8: Test D of 1,8C
Table 2-9: Test D results
Table 2-10: NCCs of test D
Table 2-11: Test E of 1,3C
Table 2-12: Test E results
Table 2-13: NCCs of test E
Table 2-14: Performances of 8 C2Ds in CP (coins' places)
Table 2-15: Test A4 of 1,4C
Table 2-16: Test A4 results
Table 2-17: Test C4 results
Table 2-18: Performances of 8 C2Ds in CP with D9F
Table 2-19: Test A5 results
Table 2-20: Test C5 results
Table 2-21: Performances of 8 C2Ds in CP with R[N:1]=1

Table 2-1

Test A of 1,5C (1,5 Combination): Total QC (Quantity of Coins) based on minimum NCCs (the Number of Coins a payer Carries) to make Y1 to Y9 without change, using 1-yen coins and 5-yen coins

To
make
HowNCCQC
[5][1]
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
1
1+1
1+1+1
1+1+1+1
5
5+1
5+1+1
5+1+1+1
5+1+1+1+1
0
0
0
0
1
1
1
1
1
1
2
3
4
0
1
2
3
4
1
2
3
4
1.61
2.61
3.61
4.61
5.61
Total52028.05

¤ QC is the sum of NCC[1] (NCC of 1-yen coins) and 1.61 times NCC[5]. e.g. QC to make Y7 is 2+1.61=3.61.

Table 2-2

Test A results: Total QCs and their Ex‰s, of 8 C2Ds

C2DTotal NCCTotal
QC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
20
12
8
5
4
3
2
1
5
9
13
20
21
24
29
36
37.20
28.32
25.88
28.05
27.44
28.83
32.22
37.61
437
94
0
84
60
114
245
453

¤ QC is the sum of NCC[1] and 1.61 times NCC[N].
¤ A total QC is expressed on its right as an Ex‰ (Excess Permillage), a permillage value of above 1000 whose QC is the minimum among 8 C2Ds. e.g. Ex‰ of 1,2C is 1000*(37.20/25.88-1)=437. The smaller an Ex‰ is, the better its performance is. The best combination marks minimum 0.

Table 2-3

Test B of 1,2C: The total of minimum LCs (Load of Count in cash transactions) to make Y1 to Y9 without change, using 1-yen coins and 2-yen coins

To
make
HowNCMLC
[2][1]
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
1
2
2+1
2+2
2+2+1
2+2+2
2+2+2+1
2+2+2+2
2+2+2+2+1
0
1
1
2
2
3
3
4
4
1
0
1
0
1
0
1
0
1
1
1.5
2.5
3
4
4.5
5.5
6
7
Total20535

¤ LC is the sum of NCM[1] (the Number of 1-yen Coins Moved in cash transactions) and 1.5 times NCM[2]. e.g. LC to make Y5 is 1+1.5*2=4.

Table 2-4

Test B results: Total LCs and their Ex‰s, of 8 C2Ds

C2DTotal NCMTotal
LC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
20
12
8
5
4
3
2
1
5
9
13
20
21
24
29
36
35
27
25
27.5
27
28.5
32
37.5
400
80
0
100
80
140
280
500

¤ LC is the sum of NCM[1] and 1.5 times NCM[N].
¤ NCM[N]s and NCM[1]s are respectively the same as NCC[N]s and NCC[1]s of test A (table 2-2).

Table 2-5

Distribution of 100,000 random numbers among 1 to 9

Num.ExpectationDistribution
1
2
3
4
5
6
7
8
9
11,111
11,111
11,111
11,111
11,111
11,111
11,111
11,111
11,111
11,249
10,983
11,026
11,078
11,086
11,082
11,121
11,184
11,191
Total100,000100,000

Table 2-6

Test C of 1,6C: How the simulation of test C proceed in the case of 1,6C

NCCTo
make
HowIncrease
of NCC
[6][1]
...............
02Y310-6-12
13Y86+1+1
(10-1-1)
-3
2
01Y510+1-6
(10-1-1-1-1-1)
0
5
10Y46-1-1
(10-6)
1
1
02.........

¤ P (a Payer in cash transactions) tries every time to best reduce NCC according to NCC[6] and NCC[1].
¤ If there are two pay patterns with a minimum NCC, P favors reducing NCC[6] over NCC[1]. e.g. In the table, to make Y4 with one 6-yen and no 1-yen, P chooses 6-1-1 instead of 10-6.
¤ NCC disregards 10-yen coins that are matters of 10-yen's place.
¤ Pay patterns in brackets are possible, but they cannot be choices because of larger NCCs.

Table 2-7

Test C results: Average QCs and their Ex‰s, of 8 C2Ds

C2DMaximum NCCAverage NCCAvg.
QC
Ex‰
[N][1]Tot.[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
4
3
2
1
1
2
3
4
1
2
3
4
5
3
3
5
5
4
4
5
5
4
4
5
1.999
1.199
0.799
0.500
0.399
0.901
1.202
1.001
0.498
0.901
1.300
1.999
2.101
1.201
0.899
1.504
3.717
2.831
2.587
2.804
2.744
2.652
2.834
3.115
437
94
0
84
61
25
96
204

¤ QC is the sum of NCC[1] and 1.61 times NCC[N].

Table 2-8

Test D of 1,8C: How the simulation of test D proceed in the case of 1,8C

NCCTo
make
HowNCMDDLC
[8][1][8][1]
........................
01Y910-10112
02Y21+1
(10-8)
0
1
2
0
0
1
2
2.5
00Y410+10-8-8
(10-1-1-1-1-1-1)
2
0
0
6
2
1
5
7
20Y68-1-1
(8+8-10)
(10-1-1-1-1)
1
2
0
2
0
4
0
1
1
3.5
4
5
12..................

¤ P chooses every time the smallest LC according to NCC[8] and NCC[1]. If there are two patterns with a minimum LC, P favors a smaller amount.
¤ LC is the sum of NCM[1], 1.5 times NCM[8], and DD (Double Digit value).
¤ DD is 2 if change (excluding 10-yen coins) exceeds Y9, or else 1 if pay (including 10-yen coins) exceeds Y9, or else 0.
¤ LC disregards 10-yen coins that are matters of 10-yen's place.

Table 2-9

Test D results: Average LCs and their Ex‰s, of 8 C2Ds

C2DProportionAverage NCMAvg.
LC
Ex‰
P>9C>9[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
0.501
0.501
0.501
0.501
0.522
0.511
0.459
0.466
0
0
0
0
0
0
0.042
0.025
1.174
0.671
0.655
0.408
0.471
0.533
0.361
0.173
0.584
1.133
1.103
1.530
1.326
1.308
2.102
2.639
2.845
2.639
2.586
2.643
2.554
2.619
3.144
3.390
114
33
12
35
0
25
231
327

¤ LC is the sum of NCM[1], 1.5 times NCM[N], and DD. e.g. LC of 1,8C is 2.102+1.5*0.361+0.459+0.042=3.144.
¤ DD is the sum of P>9 (Pay exceeding Y9) and C>9 (Change exceeding Y9).

Table 2-10

NCCs of test D

C2DMaximum NCCAverage NCC
[N][1]Total[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
47
12
13
1
11
13
29
25
16
34
30
51
33
10,633
77
77
52
36
33
52
35
10,633
77
77
5.940
1.232
1.162
0.437
1.167
1.171
1.809
0.511
2.225
4.018
3.238
7.539
4.733
5,506.1
7.005
9.566

¤ NCC[1] of 1,7C proliferates as transactions go on. Other C2Ds let P carry dozens of coins at times.

Table 2-11

Test E of 1,3C: How the simulation of test E proceed in the case of 1,3C

NCCTo
make
HowLCCLC
[3][1][3][1]
.....................
55Y710-3
(3+3+1)
(3+1+1+1+1)
(3+3+3-1-1)
-
-
-
-
-
-
-
-
2.5
4
5.5
6.5
65Y910-1
(3+3+3)
(3+3+1+1+1)
(10+1+1-3)
0
0
0
1.5
-
-
-
-
2
4.5
6
4.5
66Y83+3+1+1
(3+1+1+1+1+1)
(3+3+3+3+3+3-10)
(3+3+3-1)
(10+1-3)
(10-1-1)
0
0
0
0
1.5
0
0
0
0
1
0
2
5
6.5
10
5.5
3.5
3
44Y810-1-1
(10+1-3)
(3+3+1+1)
(3+3+3-1)
-
-
-
-
-
-
-
-
3
3.5
5
5.5
46Y93+3+3
(10+1+1-3)
(3+3+1+1+1)
(3+1+1+1+1+1+1)
(10-1)
-
-
-
-
-
0
0
0
0
1
4.5
4.5
6
7.5
2
16...............

¤ P chooses the smallest LC according to NCC[3] and NCC[1]. But if NCC[1] exceeds 5, P chooses the smallest LCC[1] (LC of 1-yen Change) before choosing the smallest LC. LCC[1] equals the number of 1-yen change.
¤ And if NCC[3] exceeds 5, P chooses the smallest LCC[3] before choosing the smallest LC. LCC[3] is 1.5 times the number of 3-yen change.
¤ Should both NCC[1] and NCC[3] exceed 5, the smallest LCC is chosen before the smallest LC. LCC is the sum of LCC[1] and LCC[3].
¤ In the table, to make Y9 with four 3-yens and six 1-yens, 4 patterns share LCC[1]=0. Of these, 3+3+3 and 10+1+1-3 also mark the minimum LC. Then, P favors the smaller pay amount.

Table 2-12

Test E results: Average LCs and their Ex‰s, of 8 C2Ds

C2DProportionAverage NCMAvg.
LC
Ex‰
P>9C>9[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
0.501
0.501
0.501
0.501
0.530
0.519
0.456
0.404
0
0
0
0
0
0
0.072
0.087
1.262
0.729
0.683
0.459
0.523
0.639
0.616
0.577
0.598
1.097
1.105
1.630
1.327
1.333
1.874
2.728
2.991
2.691
2.630
2.819
2.642
2.810
3.327
4.084
137
23
0
72
5
68
265
553

¤ Each of average LC is somewhat larger than LC of test D (table 2-9).

Table 2-13

NCCs of test E

C2DMaximum NCCAverage NCC
[N][1]Tot.[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
7
7
6
1
6
6
7
8
6
7
7
8
8
9
9
9
13
13
12
9
13
13
13
14
2.830
1.304
1.184
0.462
1.302
1.465
1.690
1.190
1.756
2.573
2.436
3.123
2.763
2.899
2.437
3.002

¤ NCCs are under control.

Table 2-14

Performances of 8 C2Ds in CP (coins' places)

C2DEx‰ of testTotal
Ex‰
A
0.05
B
0.05
C
0.45
E
0.45
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
437
94
0
84
60
114
245
453
400
80
0
100
80
140
280
500
437
94
0
84
61
25
96
204
137
23
0
72
5
68
265
553
300
62
0
79
36
55
188
388

¤ Ex‰ of tests A, B, C, and E are mixed in the ratio of 5:5:45:45 to produce the total Ex‰. e.g. Total Ex‰ of 1,2C is 0.05*437+0.05*400+0.45*437+0.45*137=300.

Table 2-15

Test A4 of 1,4C: Total QC based on minimum NCCs to make Y1 to Y9 without change, using 1-yen coins and 4-yen coins

To
make
HowNCCD9FQC
[4][1]
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
1
1+1
1+1+1
4
4+1
4+1+1
4+1+1+1
4+4
4+4+1
0
0
0
1
1
1
1
2
2
1
2
3
0
1
2
3
0
1
0.185
0.173
0.145
0.120
0.101
0.085
0.073
0.063
0.055
0.185
0.346
0.435
0.193
0.264
0.307
0.337
0.203
0.232
Total1.0002.501

¤ QC is the sum of NCC[1] and 1.61 times NCC[4], each of which is multiplied by D9F. e.g. QC to make Y7 is (3+1.61)*0.073=0.337.
¤ Total NCC[1] with D9F is 1*0.185+2*0.173+...+1*0.055=1.511. And totall NCC[4] with D9F is 0*0.185+...+2*0.055=0.615.

Table 2-16

Test A4 results: Total QCs and their Ex‰s, of 8 C2Ds

C2DTotal NCCTotal
QC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1.706
0.973
0.615
0.377
0.276
0.191
0.118
0.055
0.559
1.052
1.511
2.086
2.315
2.634
3.027
3.476
3.306
2.619
2.501
2.693
2.759
2.942
3.217
3.565
322
47
0
77
103
176
286
425

¤ QC is the sum of NCC[1] and 1.61 times NCC[N].
¤ NCC[N]s and NCC[1]s are respectively the same as NBC[N]s and NBC[1]s of test A2 (table 4-6).

Table 2-17

Test C4 results: Average QCs and their Ex‰s, of 8 C2Ds

C2DMaximum NCCAverage NCCAvg.
QC
Ex‰
[N][1]Tot.[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
4
3
2
1
1
2
3
4
1
2
3
4
5
3
3
5
5
4
4
5
5
4
4
5
1.995
1.197
0.799
0.498
0.399
0.895
1.192
0.993
0.500
0.901
1.295
1.999
2.098
1.202
0.901
1.496
3.713
2.827
2.582
2.801
2.740
2.643
2.820
3.095
438
95
0
85
61
24
92
199

¤ QC is the sum of NCC[1] and 1.61 times NCC[N].
¤ The frequencies of Y1 to Y9 are D9F (table 4-9).
¤ Maximum NCCs and average NCCs are respectively the same as maximum NBCs and average NBCs on test C2 (table 4-10).

Table 2-18

Performances of 8 C2Ds in CP with D9F

C2DEx‰ of testTotal
Ex‰
A4
0.05
B2
0.05
C4
0.45
E2
0.45
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
322
47
0
77
103
176
286
425
281
32
0
90
121
200
317
462
438
95
0
85
61
24
92
199
142
23
0
50
3
11
225
481
291
57
0
69
40
34
173
350

¤ Test B4 that examines the total LCs has the same results as test B2 (table 4-8). And test E4 that studies average LCs is the same as test E2 (table 4-13).
¤ Ex‰ of tests A4, B2, C4, and E2 are mixed in the ratio of 5:5:45:45 to produce the total Ex‰. e.g. Total Ex‰ of 1,2C is 0.05*322+0.05*281+0.45*438+0.45*142=291.

Table 2-19

Test A5 results: Total QCs and their Ex‰s, of 8 C2Ds

C2DTotal NCCTotal
QC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
20
12
8
5
4
3
2
1
5
9
13
20
21
24
29
36
25
21
21
25
25
27
31
37
190
0
0
190
190
286
476
762

¤ QC is the sum of NCC[1] and NCC[N].

Table 2-20

Test C5 results: Average QCs and their Ex‰s, of 8 C2Ds

C2DAverage NCCAvg.
QC
Ex‰
[N][1]
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1.999
1.199
0.799
0.500
0.399
0.901
1.202
1.001
0.498
0.901
1.300
1.999
2.101
1.201
0.899
1.504
2.498
2.100
2.099
2.499
2.500
2.102
2.101
2.504
190
0
0
191
191
1
1
193

¤ QC is the sum of NCC[1] and NCC[N].

Table 2-21

Performances of 8 C2Ds in CP with R[N:1]=1

C2DEx‰ of testTotal
Ex‰
A5
0.05
B
0.05
C5
0.45
E
0.45
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
190
0
0
190
190
286
476
762
400
80
0
100
80
140
280
500
190
0
0
191
191
1
1
193
137
23
0
72
5
68
265
553
177
15
0
133
102
53
157
399

¤ Ex‰ of tests A5, B, C5, and E are mixed in the ratio of 5:5:45:45 to produce the total Ex‰.

1¤4

An Efficient Combination of the Denominations of a Currency
Tables 1: Measurements of coins
Tables 2: Tests in coins' places
Tables 3: Measurements of banknotes
Tables 4: Tests in banknotes' low places
Tables 5: Tests in banknotes' high places
Tables 6: Tests of C3Ds

© 2004 Takashi Shimazaki
Updated: April 2, 2014