Integer problem 4

What are the last 4 digits of 7100?


Solution 1

Calculating the last 4 digits of 74, 78, 716, ...

72=49.
73=343.
74=2401.
From now on, only the last 4 digits are calculated:
The last 4 digits of 78=74*74 are 4801.
The last 4 digits of 716=78*78 are 9601.
The last 4 digits of 720=716*74 are 2001.
The last 4 digits of 740=720*720 are 4001.
The last 4 digits of 780=740*740 are 8001.
And the last 4 digits of 7100=780*720 are to be 0001.


Solution 2

Utilizing 72=49

  7100
=(50-1)50
=5050-...-(50*49*48/6)*503+(50*49/2)*502-50*50+1.
Since all the terms except for the last 3 terms are multiples of 10000, letting 'n' be an integer,
  7100
=10000n+(50*49/2)*502-50*50+1
=10000n+3062500-2500+1
=10000n+3060001.
Hence, the last 4 digits of 7100 are to be 0001.


Solution 3

Utilizing 74=2401

  7100
=(2400+1)25
=240025+...+(25*24/2)*24002+25*2400+1.
Since all the terms except for the last 2 terms are multiples of 10000, letting 'n' be an integer,
7100=10000n+60001.
Hence, the last 4 digits of 7100 are to be 0001.


Mathematical Problems

© 2006 Takashi Shimazaki
Updated: April 14, 2013